CNN이란 CNN 은 Convolution Neural Network의 약자로 이미지를 인식하는 분류기입니다. CNN의 구조는 다음과 같습니다. 위의 이미지는 32*32의 이미지 데이터를 LeNet 모델로 처리하는 이미지입니다. 1) C1 레이어 : 32*32 이미지를 6개의 5*5 필터와 컨볼루션 연산을 이용해 6장의 28*28 특징맵을 만듭니다. 2) S2 레이어 : 6장의 28 * 28 특성 맵에 대해 서브샘플링을 진행한다. 결과적으로 28 * 28 사이즈의 특성맵이 14*14 사이즈의 특성맵으로 축소된다. 2*2 필터를 stride2로 설정해서 서브샘플링해주기 때문이다. 사용하는 서브샘플링 방법은 평균풀링(average pooling) 이다. 3) C3 레이어 : 6장의 14*14 특성맵에 6개의..